African WildLife Classification

Unleash your creativity and technical skills in the "Wild Augmentations" Challenge! Your mission is to take the African wildlife images and transform them using the power of data augmentation with Keras. Experiment with a rich array of techniques – from rotations and zooms to color adjustments, shears, translations, and even random erasing – to generate diverse and realistic variations of the original dataset. Your submissions will be evaluated based on the diversity and plausibility of your augmented images, as well as the clarity and quality of your Python code.
Ranking Procedure
  • 100 points for completing all steps correctly.
  • 75 points for completing 3 steps correctly.
  • 50 points for completing 2 steps correctly.
  • 25 points for completing 1 step correctly.
  • 0 points for completing 0 steps.
Legend:
A (90%-100%)
B (80%-89%)
C (70%-79%)
D (60%-69%)
E (50%-59%)
F (<50%)
Leaderboard
Contest Details
Submission

Leaderboard

Last updated:

RankNameDepartmentMarks
1
Deng Kuur NhialComputer Science
100.00%
2
Reeng Kuol ReengInformation Technology
100.00%
3
MOSES LUWALLA WANI NYIGILOInformation Technology
100.00%
4
Abraham Dit ManyangInformation Technology
100.00%
5
Emilio Albert ApaiComputer Science
100.00%
6
Deng Kuol Ajak DengComputer Science
100.00%
7
Samuel thongbor makethComputer Science
100.00%
8
Athou Rebecca AjakComputer Science
100.00%
9
Edina Yeno JamesComputer Science
100.00%
10
Edmond Anthony MesagaInformation Technology
100.00%
11
Malish Ben KenyiComputer Science
100.00%
12
Rhok Longar AkueiComputer Science
100.00%
13
Emmanuel Khamis Victor LoyaComputer Science
100.00%
14
Kuot Chol MajokInformation Technology
100.00%
15
Marko Ngor Wek WekInformation Technology
100.00%
16
Yai Thon NyokComputer Science
100.00%
17
Monica Ayen BolComputer Science
100.00%
18
Mangar makur MachiekInformation Technology
100.00%
19
Andrew Akuei Atem ManyuonComputer Science
100.00%
20
Dominic Paulino OmerComputer Science
95.00%
21
Emmanuel Deng MeiComputer Science
95.00%
22
Marko Agany KuicComputer Science
95.00%
23
Samuel Maker MangarComputer Science
95.00%
24
Samuel Jada TombeComputer Science
90.00%
25
David Akech Ayor NgongComputer Science
90.00%
26
Adam Juma HaruunInformation Technology
90.00%
27
Abraham Ariik MakerComputer Science
88.00%
28
Nesnea khadi silvanoComputer Science
85.00%
29
Suzan Adut marialComputer Science
85.00%
30
Awut Deng AguerComputer Science
80.00%
31
BIET PUORIC MATUONGComputer Science
80.00%
32
Franco Komma James OgawiComputer Science
80.00%
33
KUOT JOOL ALUEL DENGComputer Science
80.00%
34
Yai simon cholComputer Science
80.00%
35
Peter Akok NgorComputer Science
80.00%
36
Agar Marial Riak AtuongtokComputer Science
80.00%
37
James Dut MathokInformation Technology
75.00%
38
DUOT DENG AJANGComputer Science
75.00%
39
Jacob Dau DengComputer Science
75.00%
40
YOUSIF JOHN MICHAELComputer Science
70.00%
41
AJACK GUET KUOLComputer Science
60.00%
42
Cecilia Nyikach Aliardo TokanInformation Technology
50.00%
43
Gop Manyuon kodiComputer Science
50.00%
44
Daniel Clement LejuComputer Science
40.00%
45
Maxim Edwin Zozimo OgoComputer Science
25.00%
46
Malong Nuoi Malong AbeiComputer Science
25.00%
47
Deng Zakaria MachComputer Science
25.00%
48
mary ojinio lako tombeComputer Science
20.00%
49
Jenty jore TheophiluComputer Science
20.00%
50
Garang Yai GarangComputer Science
20.00%
51
Mawien Tito Ariik TobyInformation Technology
20.00%
52
Atem Khor DengComputer Science
20.00%
53
Chris Khamis BobonoComputer Science
0.00%
54
Peter Arol AwanComputer Science
0.00%
55
Christina Adhar MonyjiithComputer Science
0.00%
56
Deng Dut MayenComputer Science
0.00%
57
Lual dot WieuComputer Science
0.00%
58
James machar makurComputer Science
0.00%
59
John Buosh Mayiek MaperComputer Science
0.00%
60
Betty Juru Patrick WunyiComputer Science
0.00%
61
Alek Garang TorComputer Science
0.00%
62
Winny poni ErestoComputer Science
0.00%
63
Lomude Charles JamesComputer Science
0.00%
64
Bol Monica AyuenComputer Science
0.00%
65
Abraham Madit KurComputer Science
0.00%
66
Michael Atem CholComputer Science
0.00%
67
AYATH AGANY AYATHComputer Science
0.00%
68
Mapath Samuel AjithComputer Science
0.00%
69
Panom Chot JalComputer Science
0.00%
70
MAWIEN GUET AYIIComputer Science
0.00%
71
MOU MOU BAKComputer Science
0.00%
72
Alfred Malek MaborComputer Science
0.00%
73
Bakhita Malek Tong DutComputer Science
0.00%
74
George Morbe MikeComputer Science
0.00%
75
Godfrey Lino ArkangeloComputer Science
0.00%
76
Deng Deng MadutComputer Science
0.00%
77
Dhel Malith CholComputer Science
0.00%
78
Loi Emmanuel TongComputer Science
0.00%
79
Joseph chol MagaiComputer Science
0.00%
80
Magisto Ohisa LukaComputer Science
0.00%
81
Mary Adut Achiek AruComputer Science
0.00%
82
Simon Mading AyolComputer Science
0.00%
83
Nelson Makim AterComputer Science
0.00%
84
Thomas TODOKO SamuelComputer Science
0.00%
85
Stephan Jansuk Jolius YengiComputer Science
0.00%

Dataset

The contest provides a dataset containing four images, one for each of the categories: Buffalo, Rhino, Elephant, and Zebra

The images were chosen from the African WildLife data from Ultralytics, which are shown below.

Starter Code

Participants can use the following starter code and data to begin their projects:

Rules

  • No teams allowed - individual effort.
  • No external datasets allowed.

Submission Instructions

To submit your model for evaluation:

  1. Prepare your model file (saved your model when training)
  2. Create a README file with:
    • Your name, index, and department
    • Brief description of your approach
    • Any special instructions for running your code
  3. Create a Google Drive folder and make sure it is shared with uojdeeplearning@gmail.com
  4. Put all your project files in Google Driver you shared above (code, saved model, readme file)

Evaluation Schedule

Submissions will be evaluated weekly. Results will be posted on the leaderboard by Monday at noon.