African WildLife Classification

Get ready to rumble with machine learning in the Wildest Contest of the Semester! Your mission: build a model that can distinguish between the fabulous four of African wildlife—Buffalo, Elephant, Rhino, and Zebra. This Machine Learning Safari meets Creature Classification Challenge runs weekly, with submissions evaluated every Friday at 5pm. So, forget the intimidation from whoever is currently king (or queen) of the AI jungle on the leaderboard. The only way to win this mane event is to git your models in gear and submit!
Ranking Procedure
  • Model Evaluation: Each submitted model will be evaluated on the held-out test dataset and the Top-1 accuracy for each model will be calculated.
  • Ranking: Participants will be ranked in descending order based on their model's Top-1 accuracy. The model with the highest Top-1 accuracy will be ranked first.
  • Tie-breaking: If two or more models achieve the same Top-1 accuracy, the following tie-breaking criteria may be applied (in order of priority):
    • Validation Accuracy: The model's accuracy on the provided validation set.
    • Number of Parameters: The model with the fewer number of parameters will be ranked higher (to favor more efficient models).
    • Training Time: The model with the shorter training time will be ranked higher.
Legend:
A (90%-100%)
B (80%-89%)
C (70%-79%)
D (60%-69%)
E (50%-59%)
F (<50%)
Leaderboard
Contest Details
Submission

Leaderboard

Last updated:

RankNameDepartmentTop-1 Accuracy
1
Deng Kuur NhialComputer Science
0.00%
2
Reeng Kuol ReengInformation Technology
0.00%
3
MOSES LUWALLA WANI NYIGILOInformation Technology
0.00%
4
Peter Akok NgorComputer Science
0.00%
5
Joseph chol MagaiComputer Science
0.00%
6
Loi Emmanuel TongComputer Science
0.00%
7
Magisto Ohisa LukaComputer Science
0.00%
8
Mary Adut Achiek AruComputer Science
0.00%
9
Nelson Makim AterComputer Science
0.00%
10
Simon Mading AyolComputer Science
0.00%
11
Stephan Jansuk Jolius YengiComputer Science
0.00%
12
Thomas TODOKO SamuelComputer Science
0.00%
13
Abraham Dit ManyangInformation Technology
0.00%
14
AYATH AGANY AYATHComputer Science
0.00%
15
Emmanuel Deng MeiComputer Science
0.00%
16
MOU MOU BAKComputer Science
0.00%
17
Deng Kuol Ajak DengComputer Science
0.00%
18
MAWIEN GUET AYIIComputer Science
0.00%
19
Athou Rebecca AjakComputer Science
0.00%
20
mary ojinio lako tombeComputer Science
0.00%
21
Jacob Dau DengComputer Science
0.00%
22
Awut Deng AguerComputer Science
0.00%
23
DUOT DENG AJANGComputer Science
0.00%
24
Mawien Tito Ariik TobyInformation Technology
0.00%
25
KUOT JOOL ALUEL DENGComputer Science
0.00%
26
Malish Ben KenyiComputer Science
0.00%
27
Nesnea khadi silvanoComputer Science
0.00%
28
Maxim Edwin Zozimo OgoComputer Science
0.00%
29
Andrew Akuei Atem ManyuonComputer Science
0.00%
30
Christina Adhar MonyjiithComputer Science
0.00%
31
Monica Ayen BolComputer Science
0.00%
32
Daniel Clement LejuComputer Science
0.00%
33
Mangar makur MachiekInformation Technology
0.00%
34
David Akech Ayor NgongComputer Science
0.00%
35
Peter Arol AwanComputer Science
0.00%
36
Yai simon cholComputer Science
0.00%
37
Alek Garang TorComputer Science
0.00%
38
Jenty jore TheophiluComputer Science
0.00%
39
Deng Dut MayenComputer Science
0.00%
40
Emmanuel Khamis Victor LoyaComputer Science
0.00%
41
Garang Yai GarangComputer Science
0.00%
42
James Dut MathokInformation Technology
0.00%
43
Samuel Jada TombeComputer Science
0.00%
44
Samuel thongbor makethComputer Science
0.00%
45
Edina Yeno JamesComputer Science
0.00%
46
Edmond Anthony MesagaInformation Technology
0.00%
47
Marko Agany KuicComputer Science
0.00%
48
Atem Khor DengComputer Science
0.00%
49
Adam Juma HaruunInformation Technology
0.00%
50
Abraham Ariik MakerComputer Science
0.00%
51
BIET PUORIC MATUONGComputer Science
0.00%
52
YOUSIF JOHN MICHAELComputer Science
0.00%
53
Malong Nuoi Malong AbeiComputer Science
0.00%
54
Deng Zakaria MachComputer Science
0.00%
55
Bol Monica AyuenComputer Science
0.00%
56
Abraham Madit KurComputer Science
0.00%
57
Samuel Maker MangarComputer Science
0.00%
58
Mapath Samuel AjithComputer Science
0.00%
59
Panom Chot JalComputer Science
0.00%
60
Alfred Malek MaborComputer Science
0.00%
61
Bakhita Malek Tong DutComputer Science
0.00%
62
Daniel parach malek ditComputer Science
0.00%
63
Deng Deng MadutComputer Science
0.00%
64
Dhel Malith CholComputer Science
0.00%
65
Dominic Paulino OmerComputer Science
0.00%
66
Franco Komma James OgawiComputer Science
0.00%
67
George Morbe MikeComputer Science
0.00%
68
Godfrey Lino ArkangeloComputer Science
0.00%
69
Winny poni ErestoComputer Science
0.00%
70
Lomude Charles JamesComputer Science
0.00%
71
Lual dot WieuComputer Science
0.00%
72
James machar makurComputer Science
0.00%
73
Emilio Albert ApaiComputer Science
0.00%
74
John Boush MayiekComputer Science
0.00%
75
Betty Juru Patrick WunyiComputer Science
0.00%
76
Kuot Chol MajokInformation Technology
0.00%
77
Marko Ngor Wek WekInformation Technology
0.00%
78
Yai Thon NyokComputer Science
0.00%
79
Rhok Longar AkueiComputer Science
0.00%
80
Chris Khamis BobonoComputer Science
0.00%
81
AJACK GUET KUOLComputer Science
0.00%
82
Suzan Adut marialComputer Science
0.00%
83
Agar Marial Riak AtuongtokComputer Science
0.00%
84
Michael Atem CholComputer Science
0.00%

Challenge Description

As a participant, you are tasked with developing a machine learning model that can accurately classify images of African wildlife into one of four categories:

  • Buffalo
  • Elephant
  • Rhino
  • Zebra

Dataset

The contest provides a dataset split into three parts:

  • Training set: 1,049 labeled images (at least 254 per class)
  • Validation set: 1,000 labeled images (at least 51 per class)
  • Test set: Held-out by instructor for evaluating algorith

All images are 128x128x3 pixels in JPEG format. The dataset includes various lighting conditions, angles, and backgrounds to challenge participants' models. Samples from the dataset are shown below.

Starter Code

Participants can use the following starter code and data to begin their projects:

Rules

  • No teams allowed - individual effort.
  • No modification of the CNN architecture allowed.
  • No external datasets allowed.
  • No pre-trained models allowed.

Submission Instructions

To submit your model for evaluation:

  1. Prepare your model file (saved your model when training)
  2. Create a README file with:
    • Your name, index, and department
    • Brief description of your approach
    • Any special instructions for running your code
  3. Create a Google Drive folder and make sure it is shared with uojdeeplearning@gmail.com
  4. Put all your project files in Google Driver you shared above (code, saved model, readme file)

Evaluation Schedule

Submissions will be evaluated weekly. Results will be posted on the leaderboard by Monday at noon.